Seminar

Seminar: Ul-Rendering Systems

Dominik Volkel
Graz, WS 2022

Contents
1 Abstract 1
2 Literature 2
2.1 Definition of game-engine, game-framework and game-library 2
2.2 Analysis of existing game-engines 4
221 Unibtyo e 4
222 Godot)
223 Unreal Engine 5. oo 5
2.3 Analysis of existing game-libraries for Ul-Rendering 5
2.3.1 Coherent labs: Gameface)
2.3.2 sciter L e 6
2.3.3 ultralight 6
234 QT . . o 7
3 Approach 8
3.1 Existing approacheso o 8
3.2 A fully modular approach L 9
3.3 Component: Browser-like Engine 10
3.3.1 Webkit Engineo 11
3.4 Chromium / Electron 15
3.5 Chromium Embeddded Framework (CEF) 16
4 Prototype 17
4.1 Goals 17

4.2 Intercommunication L 17

4.3 Modularity 18
5 Prototype Implementation 18
5.1 LibWUIL . . . o o e 18
5.2 Assumptions 18
5.3 Example 19
6 Results 20
6.1 Further development, 21

List of Figures

1 Sciter based Ul source 6
2 QT designer and an example Ul inside of it source 7
3 Basic Design L 10
4 Webkit 1 stack source. o 11
5 Webkit 2 stack source. o Lo 13
6 Chromium stack source 15
7 mnew architecture of spotifys desktop client source. (Sadly the original
resolution is very low.) 16
8 Example of the prototype oL 20

List of Tables

1 Abstract

User interface development has become a crucial part of game development. The user
interface is the main way for the player to interact with the game and therefore has to
be designed with care. This paper will give an overview of the different approaches to
user interface rendering and implementations in game engines which are currenlty on the
market. Special focus will be put on the rendering aspects of the different user interfaces
and their interoperability. This paper suggests a standardised user interface rendering
system for use in game engines based on established web technologies.

A prototype will be presented realizing a modular and engine-agnostic user interface
rendering and input system using standardised web technologies and their systems/tools.

https://gitlab.com/sciter-engine/sciter-js-sdk/
https://qt-blog-uploads.s3.amazonaws.com/wp-content/uploads/2019/01/qds11.png
https://trac.webkit.org/wiki/WebKit2
https://trac.webkit.org/wiki/WebKit2
https://www.chromium.org/developers/design-documents/displaying-a-web-page-in-chrome
https://engineering.atspotify.com/2021/04/building-the-future-of-our-desktop-apps/

Sections prior to the prototype serve to show its requirements and establish a baseline
for comparison against existing Ul systems.

2 Literature

This section establishes a common terminology and gives an overview of the most impor-
tant concepts and techniques in the field of game-engines, game-frameworks and game-
libraries. Additionally established game-engines and their approach to User-interface
rendering/implementation are listed and briefly discussed.

2.1 Definition of game-engine, game-framework and game-library

An important distinction to make is the difference between a game and a game-engine.
Game engines, for the purpose of this paper, are mainly data-driven [12;, Chapter 1.3]
pieces of software that enable authors to create several games without designing the
entire software architecture again from the ground up. A typical game engine consists
of several components handling different aspects of its functionality, typically a game
engine has components/modules concerning themselves with [7]:

e Scripting component: provides simple engine related control frequently used for
debugging.
e Rendering component, responsible for rendering the game world and its entities.

e Animation component: concerned with movement and deformation of objects in
fixed animations.

e Artificial intelligence (AI) component: responsible for ’smart’ behaviour of the
game world, mainly its entities (e.g. enemies, allies etc.).

e Physics component: responsible for the simulation of physical interactions between
objects in the game world.

e Audio component: responsible for the generation and playback of audio.

e Networking component: responsible for the communication between different in-
stances of the game or some kind of server or online entity.

Depending on the genre or the type of game, some of these components might not be
needed. For example, a game that does not feature any kind of multiplayer or online
component would not need a networking component.

For faster development game engines may also provide pieces of software to aid the
authors which together with the game engine form a game development framework.

These frameworks are usually more opinionated than game engines and provide a more
rigid structure for the game development process, but in exchange allow for much faster
editing and creation of games. The choice of the framework is highly important as
designers are usually comitted to using the engine/framework and cannot easily switch
between two different frameworks. Additonal pieces of software are usually related to
distinct components inside the engine and change their behaviour:

e Level editors: allow the author to create levels for the game without having to
edit raw files describing the world to the engine. These editors usually provide
a graphical user interface to create the levels and allow for a more intuitive and
faster creation of levels. This consequently influences components for: Rendering,
Physics, Animation and Al.

e Script editors: for quick editing of object behaviour. These editors mainly influence
the Al physics, audio, scripting and/or networking components.

e Material editor: for editing the look and feel of an object which mainly influences
their rendering.

e Sound editor: for editing the sound of an object which mainly influences the audio
component and its behaviour.

All of these components and their respective editors are usually provided by the game

engine [7]. Large-scale commercial game-engines typically provide all of these tools
like the unity engine[21] or unreal engine [9]. Game-libraries are implementations of
subsets of game-engine components. The allegro 5 'game programming library’[18] pro-

vides cross-platform components for rendering and audio, its’ set of features allows Al-
legro to produce a full game but in most practical cases the library requires further
libraries/components. These libraries are usually more lightweight than game engines
(since they only implement their sub-components) and are usually used in combination
with other libraries to create a game.

Establish a common definition for these terms has been a common issue in past works.
Cowan [7] quotes Sherrod [16] defining a game-engine as "a framework comprised of a
collection of different tools, utilities, and interfaces that hide the low-level details of the
various tasks that make up a video game” which Cowan concludes to the definition:
7 framework includes a game engine in addition to external tools and resources that
simplify the process of game development”. This paper will use the following definition
based on the above quotes:

e Game libraries: focus on a subset of components of a typical game engine and can
be used in combination with other libraries to create a game but cannot do so by
themselves. Example: Allegro 5 [18], ASSIMP [5].

e Game engine: a software framework that provides a set of components required
to create a game. The engine may be accompanied by development tools making

it into a game framework. Examples: G3D innovation engine [14], Quake Engine,
Doom Engine, Source Engine, Frostbite Engine

e Game frameworks: includes a game engine in addition to high-level editors for
faster development. Example: Unity [21], Unreal Engine[9], Godot engine[!7]

This definition stands in direct conflict with the community-established definition as
seen on the popular site gamefromscratch. The site defines game-libraries similarly but
the definition game-engine and framework are swapped.

2.2 Analysis of existing game-engines

The following sections will discuss game-engines which are currently in use in further
detail and their approach to UI-Rendering.

2.2.1 Unity

In their documentation unity currently supports three different Ul-renderng systems:

1. The Unity UI package (uGUI), is the current standard system for Ul-creation in
the games themselves.

2. IMGUI: mainly used to create Ul elements in the unity editor itself (for plugins
and similar purposes).

3. Ul-toolkit: using an Ul-Asset system ’inspired by standard web formats such as
HTML, XML, and CSS.” [21]

Unitys’documentation provides a direct comparison of the three different systems. The
exact technical implementation is not documented. The documentation states: ’Unity
intends for UI Toolkit to become the recommended Ul system for new Ul development
projects, but it is still missing some features found in Unity UI (uGUI) and IMGUIL.’,
which clearly indicates that unity wants to move away from the uGUI system for in-game
Ul-creation and towards the Ul-toolkit. With Ul-toolkit the system will be inspired by
web-standards but further details remain to be seen.

https://gamefromscratch.com/gamedev-glossary-library-vs-framework-vs-engine/
https://docs.unity3d.com/Manual/UIToolkits.html
https://docs.unity3d.com/Manual/UI-system-compare.html

2.2.2 Godot

Godot is an open source, community-driven 2D and 3D engine [17] founded by Juan
Linietsky and Ariel Manzur. Its interface and project structure and development process
have similarities to unity. The engine features one Ul-system which is asset-based similar
to unitys'uGUI system mentioned in 2.2.1. The Documentation does not mention its
technical implementation explicitly but the engine itself is open-source . The engine is
written in C++ and uses the OpenGL API for rendering. The engine is currently in
version 3.2.1 and is still in active development.

2.2.3 Unreal Engine 5

Unreal Engine 5 is a commercial game engine developed by Epic Games. It is currently
in version 4.25 and is used in many AAA games. The engine features a Ul-system
called Slate which is asset-based similar to unitys uGUI system mentioned in 2.2.1. The
Documentation does not mention its technical implementation explicitly and the engine
itself is closed-source. The engine is written in C++ and uses the OpenGL API for
rendering.

2.3 Analysis of existing game-libraries for Ul-Rendering

This paragraph will discuss game-libraries and their approach to UI-Rendering. Special
focus is put on libraries that are disconnected from game engines and can work inde-
pendently. From the previous section 2.1 it is clear that in game-engines ui-systems are
mostly 'baked into’ the system itself. Unity is the only outlier in this regard since their
upcoming system 'Ul-toolkit” focuses on building upon an existing standard, namely
HTML5/CSS. With their inherently more modular design game-libraries are more flex-
ible in their approach to Ul-Rendering. The following section will discuss the most
popular game-libraries and their approach to Ul-Rendering. This chapter will highlight
if an Ul-systems uses existing standards like the HTML5/CSS webstandards, referred
to as webstandard-descriptive-system from those that implement their own description
of the user interface.

2.3.1 Coherent labs: Gameface

Coherent labs [0] focuses on a webstandard-descriptive-system with their product Game-
face. This system has, according to their website, been used in several games which are
listed here. Among these are well known titles such as ’Outriders’ and 'Control’. Though
further research can neither confirm nor deny this to be true. Possibly the system is

https://docs.godotengine.org/en/stable/tutorials/ui/index.html
https://docs.unrealengine.com/en-US/Engine/UI/index.html
https://coherent-labs.com/powered-by-coherent-labs/

also only used for prototyping purposes but this could also not be confirmed without
directly inquiring the game-creators. Major features, which are listed here, of Gameface
include full support for the entire JavaScript language ecosystem inside a WebAssembly
core engine. In general any instruction running in javascript/react/typescript will also
run correctly in this system according to their documentation. It is closed source and
further information of the technology and its library /source code requires an inquiry at
the firm. In their technical documentation, which can be found here, is available openly
but the samples are not fully listed and therefore further asessment of inner functionality
and engine integration can not be made. It is not apparent if the system is still actively
in development because of its closed-source nature.

2.3.2 sciter

Sciter [19] is published via gitlab, which can be found here in pre-compiled binary snap-
shots. Getting full access to all platforms requires a license. Therefore the project is
closed source. The main purpose of this software is to be embedded in existing c++ en-
gines/systems as a sub-module similar to Gameface Referencessec:Coherent labs: Game-
face and is also an webstandard-descriptive-system. According to the projects github
page it is still actively being developed and improved. The largest software product
using skiter is "War Thunder’ a videogame.

$O© =

@ Sciter,)S Calculator About ScApp v A X

Pl pi@raspberrypi: ~/De... [SSlpi@raspberrypi: ~/De... p\@raspberrypi‘ ~ PIll pi@raspberrypi: ~/De... arm32

ScApp is a standalone Sciter executable. It includes Sciter
Engine linked statically thus it can run without installation of
any additional components.

AC DEL - To load document in it do either one of these:

1. Put scapp.html or scapp.zip file in the same folder as

1 2 3 * the executable;
2. Run executable with the parameter - path of your

application file to open. The file may use any name and
extension but shall be either zip or html.

sciter 4 5 6 +

If used, the zip file shall contain main.html file defining main
window of the application.

8 9 - Open HTML window

For more details please visit SCApp at sciter.com.

‘ 0 = ScApp and Sciter are copyright of Terra Informatica Software, Inc
gy

Figure 1: Sciter based UI source

2.3.3 ultralight

Ultralight [20] uses the javascript core engine used by webkit according to their doc-
umentation which can be found here and mainly advertises itself as being ’very low

https://coherent-labs.com/Documentation/cpp-gameface/d3/dde/features.html
https://coherent-labs.com
https://gitlab.com/sciter-engine/sciter-js-sdk/
https://gitlab.com/sciter-engine/sciter-js-sdk/
https://trac.webkit.org/wiki/JavaScriptCore
https://webkit.org
https://docs.ultralig.ht/docs/about-javascript-interop

weight’” and having a small memory footprint. These claims are not backed up by any
benchmarks or other sources since the project is not entirely open-source and there have
not been studies done confirming or denying its performance. The repository, found
hereincludes samples and licensing information; the most recent update to their repos-
itory and their most recent statement is over 2 years old which makes it unclear if it is
still in active development. According to the projects page it mainly supports C/C++
engines but also has bindings from the community for other languages. Ultralight fo-
cuses on single-process support compared to the other platforms multi-process rendering
as is common in modern browsers where each tab/website represents a process. Ul-
tralight uses the same JavaScript engine as WebKit/Safari and therefore also supports
react/Vue.js/Angular.

2.3.4 QT

QT is a cross-platform framework for developing applications and user interfaces. It is
written in C++ and is open-source. It is used in many applications and games. The QT
framework is not a game-library but a framework for developing applications, therefore
not a direct competitor to the game-libraries discussed in this section. However, it is a
good example of a framework that is used in games and has a modular Ul-system. The
QT framework has a Ul-system called Ot Widgets which is a C++ based system, which
does not attempt to be based on any existing webstandard. Therefore the description of
the Ul is bound to the QT platform.

Figure 2: QT designer and an example Ul inside of it source

https://github.com/ultralight-ux/ultralight
https://www.qt.io/product/features
https://doc.qt.io/qt-5/qtwidgets-index.html
https://qt-blog-uploads.s3.amazonaws.com/wp-content/uploads/2019/01/qds11.png

3 Approach

In this section I will elaborate on the existing approaches and discuss my own approach
and the potential advantages and disadvantages of it.

3.1 Existing approaches

Existing approaches can be roughly divided into two categories:

o webstandard-descriptive-system: The Ul is described in a webstandard inspired
way. This means that the Ul is described in HTML/CSS/JS. This is the approach
taken by Gameface 2.3.1, Sciter 2.3.2 and Unity Ul-toolkit 2.2.1.

e non-webstandard-descriptive-system: The Ul is described in a non-webstandard
compliant way. This means that the Ul is described in a proprietary way or in
some specific language. This is the approach taken by QT 2.3.4, Unity immediate-
GUI System 2.2.1, Unreal Engines’ UI-System and Godots’ UI-System 2.2.2. All
these systems are due to their specific description methods not interoperable and
development has to be done in the specific language/environment.

In my research there was no established approach to the problem of a modular Ul-system
using fully web-standard compliant formats for Ul-description. Most established game-
engines use their own proprietary Ul-systems which are not interoperable in any way.
Committing to a single engine also means commiting to its Ul-System as the engine and
accompanying frameworks are developed in tandem with the Ul-system. This brings up
a few development issues for non web-based Ul-systems:

e Developing in an engine and needing to switch to another engine because of a spe-
cific feature or limitation will mostly entail a complete rewrite of the Ul-system
thus far. This creates significant friction and may make the engine switch un-
feasable or at least very costly in temrs of time.

e The UI is ’locked’ to the engine and cannot be reused in other engines or even
projects on the same engine. As an example Unity 2.2.1 immediate system uses
in-engine objects to bind to which makes the Ul very hard to reuse without also
reusing large parts of the internals of the game. This makes reusability possible
inside an engine but makes it very rigid.

e The capabilities of the Ul-System are bound by the capabilities of the UI-System
of the engine itself.

e Development for these UI-Systems is very specialized and mostly require specific
training for the engine. This makes it hard to find developers for these UI-Systems
and also makes it hard to find developers that can work on multiple UI-Systems.

e For these UI-Systems there is an ongoing challenge to change the Ul on a runtime-
level. Since the engine and UI are tighly interconnected outside modification and
customization (especially during runtime) is very difficult and often times requires
a lot of custom code and large 'menu’ screens that edit each element/color individ-
ually. This is a very tedious and time consuming process that is very unfriendly
for developers and users and is additionally very hard to maintain and extend.

The above disadvantages are mainly due to the custom nature of the Ul-systems. From
the perspective of the engine devopers this "locked in’ behaviour of the Ul might be a
desired feature as it requires developers to stay with the engine.

Web-based systems address some of these issues like:
e Reusability within the engine as html/JS events are more easily bound.

e Finding developers for Ul-Systems as web development is a much more common
skill than Ul-Design in a specific engine.

e Reusability even between engines as long as the Ul system is web-standard com-
pliant.

Currently no 100% web-based Ul-system that have been tested in an open-source manner
exists. UI-Webkit from Unity 2.2.1 does attempt to use this technology, but is by design
not fully web compliant as it will use their custom XML/HTML hybrid system, locking
developers in the ecosystem just as much as previous approaches.

3.2 A fully modular approach

All the above approaches to Ul-Design also do not consider parallel development, as in
separate development teams for the game logic and the game-UI/Interface. The web-
based approaches allow this to some extend as there is a common interface between Ul
and the program itself. I will suggest a fully modular event-based system that decouples
the development processes of the Ul and the Game logic itself. The below diagram tries
to illustrate the 2 distinct parts and how they communicate with each other.

From the viewpoint of the Game Engine or the Ul system the other compontent should
be treated as a "black box”. From a design perspective the two system should know as
little as possible from one another in order to make them as modular as possible. They
communicate via primitive-datatype (numbers/names) defined events in order to keep
communication as simple as possible and reduce necessary custom implementation for
different platforms. It can be assumed that modern systems have a common type defini-
tion in string/numbers without needing any lower level communication like endian-ness
or similar issues that might occure on low-level systems/communication. The internal
communication can be acheived with a socket communication structure. decoupling the

Ul

Browser-like Engine

HTML/CSS

Game Engine

Game Logic :]IUI Events
Button

Control Events Textfield O

:>:

Figure 3: Basic Design

entire system even further and also enabling applications that might want to run Ul-
Rendering and Game logic on two completely separate machines, leaning into the area
of Server Driven UL

3.3 Component: Browser-like Engine

There are a lot of different Browser engines which are currently in use and activiely
developed, though for the purposes of this paper there exist a few important requirements
which must be met:

e The engine should be open-source and free to use. The main idea of this system
is to make testing results easy to verify; using a closed source engine would hinder
development and debug-ability immensly.

e Offscreen rendering: In this context "Offscreen rendering” means that the main
UI that is rendered by the engine needs to be rendered to a texture or a buffer
that can be used by the game engine. This is critical as to accomodate as many
different rendering pipelines and approaches as possible.

e Cross platform: Most browser engines are cross-platform and can be compiled
for Windows, Linux and Mac. As to not restrict platform usage the engine itself
should support as many as possible out-of-the-box.

The following paragraphs will examin an engine in more detail and argue if an engine
would be fit for this modular purpose.

10

3.3.1 Webkit Engine

Webkit can be broadly categoriezed into 2 versions: Webkit V1 and Webkit V2. Webkit
V2 is the sucessor to Webkit V1 and is the current version of the engine. This document
mainly concerns itself with Webkit V2.

Webkit V1 / Webkit Legacy APl Webkit V1 is based on the KHTMLI[2] and KJS[3]
engine which was developed by the KDE [I] project, it is said that the project started
in 1998 and the Webkit project itself was started by Don Melton in 2001 (no primary
source found).

Webkit V1 is considered legacy software and is severely outdated. The Webkit 1 ver-
sion was a single-process architecture which was abandoned in favor of a multi process
architecture described in section 3.3.1 (source bugtrack). The main reason ,stated on
webkits wiki, was the incompatible API switch from V1 to V2.

Mac WebKit

Ul Process

Application
AP1 Boundary
WebKit

WebCore

r
1
[l
(]
i
]
i
]
i
]
i
]
[l
[l
i
[l
i
]
i
]
[]
i
[l
[l
]
[}
]
i
]
[]
i
]
i
[
[}

Figure 4: Webkit 1 stack source

Essentially figure 4 shows that layouting, JS processing and rendering all happen in the
same process and there is no need for interprocess communication. This makes it suitable

11

https://bugs.webkit.org/show_bug.cgi?id=132399
https://trac.webkit.org/wiki/WebKit2
https://trac.webkit.org/wiki/WebKit2
https://trac.webkit.org/wiki/WebKit2

for Game-Engine applications as it is a single process and can be easily integrated into
the a game engine process. Tools like 2.3.3 are based on Webkit V1. Though its outdated
nature imposes obvious limitations on the engine and its capabilities as well as diverse
security risks as it is not maintained anymore.

Webkit V2 On the surface webkit V2 [1] is the most promising html rendering engine
for a modular UI system. The Webkit Engine is hosted on github and has (at the
time of writing) almost 6k stars, 865 forks and over 900 contributors. This chapter will
mainly focus on the structure of webkit, its sub components and its history. It is well
maintained, has a large company, Apple [4], behind it and is used in many cross-platform
scenarios. One of its main design philosophies is "hackability” which means that it is
easy to extend and modify the engine to fit any needs. This is a very important aspect
for this project as it will be used as a base for many different projects and will need to
be easily extendable and hackable. The list of components creating webkit (cited from
their github page) consists largely of:

bmalloc: A custom malloc implementation with security features.

WTF: "Web Template Framework” which lays the foundation in C++ datastruc-
tures for the rest of the engine.

JSC: "JavaScriptCore™ The Javascript engine.

WebCore: Rendering engine (which is the most interesting component for our
purposes)

The main difference to Webkit V1 is that it is a multi-process architecture.

12

https://github.com/WebKit/WebKit
https://github.com/WebKit/WebKit/blob/main/Introduction.md

WebKit2
Ul Process

Application

—t— 4 — APl Boundary
WebKit (Ul Process)

LR L LR}

WebKit (VWeb Process)

WebCore

JS Engine

Web Process

EnsrEssressseeeeeeeeeeennliz s s s e

Figure 5: Webkit 2 stack source

Figure 5 shows that the actual host Application is outside of the previous stack. With
Webkit V2 interprocess communication (IPC) is necessary which is the main reason the
ports exist mainly for Linux based operating systems. The abstraction Webkit tries to
provide with this is called "Core IPC” which uses mach messages on OSX and named
pipes on windows. On Linux the implementation is port dependant.

The main advantage of Webkit is its large array of features and its open-source sta-
tus. It is field tested and used as the rendering engine for many popular browsers and
therefore has considerable support and a large community. Most notibly Safari uses
Webkit and with apples high standard for security and feature implementation makes it
a good choice. Additionally is Webkit cross-platform compile-able making it addition-
ally suitable for this kind of modular application. Webkit also shares most of the goals
of this project listed here including: Performance, Portability, Usability, Open Source
and Open Source ;and is therefore a good fit for this application. Most notibly is the
project goal of "Web Content Engine” stating: "The project’s primary focus is content
deployed on the World Wide Web, using standards-based technologies such as HTML,
CSS, JavaScript and DOM. However, we also want to make it possible to embed WebKit

13

https://trac.webkit.org/wiki/WebKit2
https://webkit.org/project/

in other applications, and to use it as a general-purpose display and interaction engine.”,
which is exactly what this project tries to use it for.

Webkit Ports There exist 2 large "platform ports” of webkit next to the Safari tech-
nology preview (seen on webkits website).

e WPE: "Webkit Port Embedded” is the official Webkit port for embedded platforms.
Its main design goal was to be independent of specific user-interface toolkits, as
explained on their website. it requires a libwpe backend for rendering on each
platform.

e "Webkit GTK": is a port created by gnome.org using GTK Ul library as a rendering
backend.

Technically the only requirement is WebCore itself as a rendering engine. The component
is very deeply embedded into the rest of the software with no documented way to extract
it or using it as a standalone component. Therefore a project using Webkit would require
producing a port that implements all the necessary backend components for the entire
webkit project.

Both options of ports are linux only. A project that runs on windows as well would
require a new port to be developed. Creating a new port is a very large undertaking
and would require a lot of time and personel. Each platform target would require some
IPC for the specific platform as well as some rendering backend to handle the actual
rendering.

Additionally the documentation of creating a port is very sparse and does not provide
a lot of information without having someoen on the team with experience in porting
webkit.

For confirmation on the scale of such a project "Mario Sanchez Prada <mario@igalia.com>"
who works at igalia[l3] the company behind the WPE port. On 13.04.2023 he replied
with:

Working with a Web engine like WebKit is a very complex task on its own,
even if it’s just to create an application that uses it as a library, without
modifying the engine itself... but creating a port of WebKit is of course
way more complex than just "consuming” it as a library. Unless you are
Andreas Kling and have multiple years of experience and knowledge on both
Operating Systems and Web engines, it’s usually a multi-person and multi-
year effort to build a working port even if you only target one OS, so it’s
indeed a very complex task...”

Knowing this makes using Webkit directly unfeasable.

14

https://webkit.org/downloads/
https://wpewebkit.org/about/architecture.html
https://github.com/WebPlatformForEmbedded/libwpe
https://webkitgtk.org
https://www.gtk.org
https://trac.webkit.org/wiki/SuccessfulPortHowTo#RecommendedPortingSteps

3.4 Chromium / Electron

This paragraph more closely investigates chromium-like systems. Electron [10] also falls
into this category as it internally embedds chromium, this is documented as "What
is Electron?”. Chromium internally also depends on webkit, as can be seen in their
documentation. The engine implements its own port for webkit in order to use it cross-
platform.

Tab haipers anfached o fhe WebContams wa Weblonenralizetaia)l

| | Tab Helper .
. chrarmeda
(Content module boundaryh — -

~ WebContents[Impl] contentbrowsan'web _contents
(Rend [ln'iE iiﬁ;:ﬁwm} contentbrowsearrendener_host
(process boundary) —f——==—~~~-- FE ——————————————— -
endarer
(RenderView(impi), RenderWidgatimpi) corlenl renderer

WebKit glue .
{(WebView, WebWidget, WebFrame, etc.) webkit/glue

WebHit Pori WehiHit third party b

Figure 6: Chromium stack source

The conceptual image 6 shows the different components of chromium. The layer "Webkit
Glue” translates the different types webkit uses to the types that google more commonly
uses. Again the entire engine would implement too many features for the purposes of
this project, as this project is interested in the rendering component only.

Electrons own documentation states that it works by embedding chromium and nodejs
into its binary. This allows for large compatability with many platforms, but essentially
means the application includes an entire browser as described in their documentation.
Using electron a developer writes one nodejs codebase to run on many platforms, but
this broad compatability comes with the cost of a lot of abstraction and losing hardware-
features. For example multithreading is only possible via a browsers web-worker imple-
mentation. This would severely restrict performance of any game engine.

15

https://www.electronjs.org/docs/latest/
https://www.electronjs.org/docs/latest/
https://www.chromium.org/developers/design-documents/displaying-a-web-page-in-chrome/#webkit
https://www.chromium.org/developers/design-documents/displaying-a-web-page-in-chrome/#webkit
https://www.chromium.org/developers/design-documents/displaying-a-web-page-in-chrome
https://www.electronjs.org/docs/latest/#getting-started
https://www.electronjs.org/docs/latest/tutorial/multithreading
https://www.electronjs.org/docs/latest/tutorial/multithreading

3.5 Chromium Embeddded Framework (CEF)

As mentioned in the previous section including the entire Chromium browser would be
too much overhead, but the projects bring more minimal implementations to light. The
Chromium Embedded Framework [I1] aims for exactly this purpose. The CEF project
can be embedded into other programs by starting up its own process for rendering and
input processing. Most notibly the project is used by spotify to power their different
clients across different operating systems [4].

C++ Native Container

Chromium Embedded Framework

React App (TypeScript)

—— Library AP Playlst AP Playbach AP —
AP
Native Nab Nat Absfractions

1 T T
I I I

JS-MNatrve Bindings

Native Playback l Native Playlist AP1 Natve Library AP1

GraphQL / REST (Web AP1) Services

Spaty Backend

Figure 7: new architecture of spotifys desktop client source. (Sadly the original resolu-
tion is very low.)

As can be seen in figure 7 the desktop client internally uses the CEF project. CEF pro-
vides JS-Native-bindings, which in practice means that the containing C++ application
(here named "C++ Native Container”) can interactive with the internal datastractures
used in by the web app (or any other node application) through a layer with a similar
purpose as the "webkit glue” mentioned previously in section 3.4.

This architecture allows spotify to quickly and reliably control native hardware, while
graphically rendering the UI with a web-based technology. This is a very good example
of how the CEF project can be used to achieve the goals of this project. Native hardware

16

https://engineering.atspotify.com/2021/04/building-the-future-of-our-desktop-apps/

interaction must be done manually in most cases as drivers vary widely between different
operating systems.

In this system CEF is a child thread of the native program, eliminating the need for
IPC (inter-process communication) which would also be implemented separately for the
overarching operating system.

By describing the actual user-interface in a web-based technology the UI can be easily
changed and updated without having to recompile the entire application. This further
allows the usage of web-development infrastructure and testing mechanisms like unit
tests and integration tests (e.g. jest [15]). Theoretically this would allow a complete
decoupling of the development processes between a game running in an engine and the
UI shown on top of it.

4 Prototype

The prototype (also called "WUT” or "Web UI”) described in this paragraph facilitates
a proof-of-concept and attempts to be a minimal working example for a user interface
running over a ‘'game’ running an arbitrary engine. As described in the above section
3.5 the CEF project is a good candidate for such a prototype.

For game logic the most minimal example would be a game library that can handle
game logic but does not include any asset management out-of-the-box, with this in
mind unity [2.2.1] or Unreal Engine [2.2.3] would be too "high level” for this purpose.
The Allegro [18] game library is our arbitrary choice for such a purpose. The library
provides window management and input management for all major operating systems
out-of-the-box, while also providing nothing beyond this.

4.1 Goals

Generally this prototype aims to facilitate the common interface between the two com-
ponents. A goal would be to create a minimally working example where an action on the
UT can trigger some action inside the game/application logic itself via some generalized
interface.

4.2 Intercommunication

Communication between the components would inevitably be realized via the "JS-Native-
Binding” described in 7. As such the communication would use a predefined structure

17

that both sides understand trivially; a generic json structure or descriptive string/event
id management would be suitable.

4.3 Modularity

The main process running the game (which in turn runs the Ul CEF process), should
include all necessary CEF features via a dynamic library. This would allow for maxi-
mum modularity and detachment between the UI and the game engine. To guarantee
modularity the headers and definitions for some CEF events (e.g. mouse events and key-
board events) will need to be ’shadowed’; else the end user would need to link against
an internal CEF header severely increasing difficulty of usage.

5 Prototype Implementation

A prototype would consist of two parts, the main library implementing "WUI” and an
example project using said library. The prototype was developed on a linux system link-
ing against X11 as a desktop manager. Most of the platform-specific logic is abstracted
away by the Allegro library.

5.1 LibWUI

When considering the main goals of this library a "top down” approach was chosen. The
library should be as simple as possible to use and compile with, while also not restricting
the end-user too much. The approach will have to make reasonable assumptions of usage
and provide interfaces to circumvent these assumptions.

5.2 Assumptions

Rendering any graphic (like the UI) will inevitably produce a bitmap representing the
current "look’ of the UI. A callback-based approach cannot be easily considered due to
frame syncing and FPS. As the library wants to interfer as little as possible with the
rendering process it should just provide the bitmap in an "always valid” manner giving
the user the freedom to decide when and what to render. For this the library pushes a
pointer to the currently valid pixelbuffer by itself without developer interaction. Most of
this benefits memory safety and the libray can always ensure validity before sending the
buffer to the user. A disadvantage is the internal necessity of a double-buffer principle
in order to have a hot’ draw target and a currently shown ’stable’ image. This would

18

duplicate memory usage for the display buffer and further triple it when the end user
includes it in their own scheme. But even on large screens this is negligible and the
memory usage is still very low.

System input events will be shadowed and forwarded from the CEF internal system to
produce a common interface. Here an unexpected problem occures: It is not trivial
to conclude when an event should be forwarded to the UI an when it should not. It is
necessary to consider that html and the javascript engine does not expose any mechanism
to check if any listener for an event was triggered or not. Even if it did there are cases
where the user might want to click a part of the Ul that does nothing but also does not
trigger any event in the underlying engine.

To keep this complex problem as simple as possible any mouse-click or mouse-wheel
events that are forwarded to the Ul, have their coordinates checked against the currently
shown pixel buffer. If the pixel on the events position is all 0 then it can be assumed
that the event was not meant for the Ul at all. These functions will then return "false”
and the click is ignored and not forwarded to CEF. A "force” flag should be provided to
circumvent this mechanic if desired (Though making an invisible button might not be
the best UI design choice).

Knowing this WUI does a very simple approach for all 4 possible CEF events:

e Mouse movement events: Should always forwarded (otherwise hovering effects and
similar cursor-modifications would not work).

e Mouse click events: Are forwarded to the UI, if the pixel at the events position is
not all 0.

e Mouse wheel events: Work the same as mouse-click events; mainly considering
"scrollable” areas.

e Key events: Are ignored in this prototype (and example). There is no 'clean’ way
to deduce weather a key event was meant for the Ul or not. This is a problem that
needs to be solved in the future, either by checking if anything is ’in-focus’ or a
different ’enable’ flag.

5.3 Example

An example mainly shows how to bind and use said library. The example shown in
8 consists of 2 main areas, the gray overlay on the top half of the display showns Ul
components. Any click on this area is forwarded to the UI. The contained html code
is very simple, it shows a heading, some text, two interactive fields (one of which auto-
increments each second) and another being incremented by the neighbouring button.

19

This also shows simple javascript and styling capabilies. The background color is de-
liberately chosen to be sem-transparent. The bottom half shows a "blank” area. Right
clicking this are will spawn a ball with a random color and diameter. The ball will
bounce inside the screen and is rendered by the engine itself.

wui_example

Increment Value

Figure 8: Example of the prototype

The program may be closed cleanly by pressing the "ESC” key.

Code for this example can be found on here. The libray and compilation instructions
can be found here.

6 Results

The prototype shows that the concept of a "Web-UI” is possible and can be implemented
with reasonable effort. Compilation of a release candidate shows that there is quite a
significant memory overhead. Including all libraries the footprint of this example is
around 1.2GB, which is quite subtantial, but considering the size of the libraries used
(CEF, Sandboxing, ...) not unexpected. Additionally our example only shows a very
basic pure html-written Ul. Any additonal or higher feature using the CEF engine would

20

https://github.com/ZweiEuro/WUI_PROJ
https://github.com/ZweiEuro/WUI_LIB

not increase the memory footprint further (meaning this is "as big as it gets” regarding
the CEF dependencies).

6.1 Further development

The current prototype has a lot of open questions that need addressing, some of which
are listed below:

How to handle key events?
Test relative and file routing of assets.
Add a more complex example for the Ul itself.

Add a build system for a more complex UI using Webpack and modern JS/Typescript
systems (including Jest and modern testing systems).

Bidirectional (possibly event based) Communication between the Ul and the main
program/engine. This will most likly make a custom npm package necessary.

Test the entire system on windows/mac

Profiling performance, memory and CPU usage compared to modern UI solutions
or other frameworks (like unity 2.2.1 or unreal engine 2.2.3).

Usability study of the Ul system compared to other solutions.

Security concerns using a web-based UI system (especially considering the possi-
bility of using JS to access the internet).

Usability study for system using separate team management between Ul and engine
development teams.

Nevertheless the prototype shows that a generalistic approach is possible and has po-
tential to be implemented into a full product/library in the future.

References

2

1]
2]
3]
[4]

1] KDE e.V. - KDE Community/Non-Profit organization. KDE e.V., 2023.
KDE HTML rendering engine. KDE, 2023.

KJS - KDE JavaScript engine. KDE, 2023.

4] Webkit engine. Apple Inc., 2023.

21

Kim Kulling Alexander Gessler, David Nadlinger et al. Open asset import library,
2022.

Coherent Labs. Coherent labs, November 2022.

Brent Cowan and Bill Kapralos. A Survey of Frameworks and Game Engines for
Serious Game Development. In 2014 IEEFE 14th International Conference on Ad-
vanced Learning Technologies, pages 662-664, July 2014.

Spotify Engineering. Building the Future of Our Desktop Apps, April 2021.
Epic Games. Unreal engine, April 2019.
OpenJS Foundation. OpenJS foundation. https://www.electronjs.org, 2021.

Marshall Greenblatt. Chromium embedded framework.
https://bitbucket.org/chromiumembedded/cef/src/master/README.md, 2008.

Jason Gregory. Game Engine Architecture. : A K Peters/CRC Press, an imprint
of Taylor and Francis,, Boca Raton, FL, 3rd edition. edition, 2018.

S.L. Igalia. Igalia. https://www.igalia.com/technology /browsers, 2009.

Morgan McGuire, Michael Mara, and Zander Majercik. The G3D innovation engine,
January 2017.

Inc Meta Platforms. Jest. https://jestjs.io, 2023.

A. Sherrod. Ultimate 3D Game Engine Design & Architecture. Charles River Media
Game Development Series. Charles River Media, 2007.

Software Freedom Conservancy. Godot engine, November 2022.

Allegro 5 Development Team. Allegro 5 - A game programming library, January
2008.

Terra Informatiaca Software, Inc. Sciter engine, November 2022.
Ultralight, Inc. Ultralight, 2021.
Unity Technologies. Unity engine, November 2022.

22

	Abstract
	Literature
	Definition of game-engine, game-framework and game-library
	Analysis of existing game-engines
	Unity
	Godot
	Unreal Engine 5

	Analysis of existing game-libraries for UI-Rendering
	Coherent labs: Gameface
	sciter
	ultralight
	QT

	Approach
	Existing approaches
	A fully modular approach
	Component: Browser-like Engine
	Webkit Engine

	Chromium / Electron
	Chromium Embeddded Framework (CEF)

	Prototype
	Goals
	Intercommunication
	Modularity

	Prototype Implementation
	LibWUI
	Assumptions
	Example

	Results
	Further development

